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The problem of acoustic radiation generated by a spatially growing instability wave 
of a supersonic two-dimensional mixing layer is studied. It is shown that a t  high 
supersonic Mach numbers the classical locally parallel-flow hydrodynamic stability 
theory as well as the more recent theories based on the method of multiple scales (e.g. 
Saric & Nayfeh 1975; Crighton & Gaster 1976; Plaschko 1979; Tam & Morris 1980) 
would fail to give even a first-order instability wave solution. Physically, a t  these 
high flow speeds the radiated sound field is no longer an insignificant part of the total 
phenomenon. The disturbances associated with the flow-instability process now 
extend from the mixing layer all the way to the far field. The problem is therefore 
global in nature. Methods of solution which are predicated on local approximations 
such as the classical locally parallel-flow hydrodynamic-stability theory or the 
method of multiple scales are hence inappropriate and inapplicable. A global solution 
based on the method of matched asymptotic expansions is constructed. The outer 
solution is valid outside the mixing layer. It provides a mathematical description of 
the radiated acoustic field and the pressure near field. The near field in this case 
consists of both the acoustic and the hydrodynamic (non-propagating) fluctuation 
components. The inner solution is valid inside and in the immediate vicinity of the 
mixing layer. Physically it represents the instability wave of the flow. Matching is 
carried out according to the intermediate matching principle of Van Dyke (1975) and 
Cole (1968). Matching terms to  order unity gives the basic instability-wave solution. 
Matching terms to the next order gives the instability- and acoustic-wave amplitude 
equation. For low-Mach-number flows i t  is found that the present results agree with 
the multiple-scales solution of Tam & Morris (1980). 

1. Introduction 
I n  this and the companion paper (Part 2, Tam & Burton 1984) the phenomenon 

of sound generation by spatially growing instability waves in high-speed flows is 
investigated. This process of noise generation is most effective when the flow is 
supersonic relative to the ambient speed of sound. In  the past, a number of 
investigators e.g. Sedel’nikov (1967), Tam (1971, 1972, 1975), Bishop, Ffowcs 
Williams & Smith (1971), Chan & Westley (1973) and Morris (1977) have suggested, 
on theoretical grounds, that flow instabilities could be the dominant noise-generation 
mechanism in supersonic jets. This idea was confirmed in a series of low-Reynolds- 
number supersonic-jet experiments by McLaughlin, Morrison & Troutt (1975, 1977). 
More recently Troutt (1978) and Troutt & McLaughlin (1982) repeated the same 
experiment a t  a moderately high Reynolds number and came to the same conclusion. 
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As a part of their study, Troutt & McLaughlin gently excited their jet by a glow 
discharge mounted flush at the nozzle exit. Under this condition hot-wire measure- 
ments in the jet flow and microphone measurements in the pressure near field outside 

the jet revealed the presence of a spatially growing instability wave a t  the forced 
frequency. Associated with the instability wave was an acoustic field. This acoustic 
field extended all the way to the boundaries of the anechoic chamber. In  the present 
theoretical investigation, efforts will be confined primarily to the experimental 
situation just described. The basic reason for this is that  the excited instability-wave 
problem is deterministic and consists of one dominant instability wave only. On the 
other hand, in an unexcited or natural jet the unsteady-flow components comprise 
a broad band of randomly mixed instability waves. To describe the gross dynamical 
behaviour of this band of waves a stochastic or statistical formulation becomes 
necessary. 

Classical hydrodynamic-stability theory of a compressible flow (see e.g. Lees & Lin 
1946; Lin 1953; Lees & Reshotko 1962; Mack 1965, 1975; Blumen 1970, 1971; 
Reshotko 1976) does not predict acoustic radiation by instability waves. I n  fact, the 
whole question had been completely ignored until the recent work of Tam & Morris 
(1980). The point of departure of the analysis of Tam & Morris from classical 
hydrodynamic stability theory is their recognition that to determine sound radiation 
a global solution of the entire wave propagation phenomenon is necessary. To 
understand this physically, let us examine the noise-generation processes involved. 
In  free shear flows such as mixing layers or jets, the mean flow diverges slowly in 
the flow direction owing to the entrainment of ambient fluid. Over the initial region 
where the shear layer is thin and the mean-velocity gradient is large the amplitude 
of an excited instability wave grows very rapidly. As the wave propagates downstream 
the growth rate reduces. This is because as the flow slowly diverges the transverse 
velocity gradient is gradually reduced. Eventually a t  some point downstream the 
growth rate of the wave becomes zero. On propagating further downstream the wave 
becomes damped. I ts  amplitude decreases as i t  continues to propagate until it  
becomes vanishingly small. The growth and decay of the wave amplitude is extremely 
important to the sound-radiation process. This is especially true for instability waves 
with subsonic phase velocity relative to  the ambient sound speed. It is well known 
that a subsonic wave of constant amplitude docs not generate sound in a compressible 
medium. Such a wave has a discrete wavenumber spectrum. However, for a 
fixed-frequency instability wave whose amplitude undergoes growth and decay 
spatially its wavenumber spectrum is no longer discrete. Instead, it is broadband. 
Some of these broadband wave components, especially those of small wavenumbers, 
would actually be moving with supersonic phase velocities. These supersonic phase 
disturbances, by the wavy-wall analogy, will immediately lead to acoustic radiation. 

To describe the growth and decay of the excited instability waves due to the slight 
mean-flow divergence Tam & Morris (1980) employed the method of multiple-scales 
asymptotic expansion (see e.g. Nayfeh 1973). In  recent years the use of the method 
of multiple scales for the analysis of slightly non-parallel flow instability waves has 
become quite popular (e.g. Saric & Nayfeh 1975, 1977; Crighton & Gaster 1976; Garg 
& Round 1978; Plaschko 1979; Morris 1981). The procedure adopted by Tam & Morris 
is very similar to  the method of Saric & Nayfeh (1975). However, the multiple-scales 
instability-wave solution, just as the classical locally parallel-flow normal-mode 
solution, predicts no sound radiation. As a matter of fact, all these solutions are 
constructed with the boundary condition that the wave disturbances decay to zero 
far away from the mixing layer or jet. Thus by itself the multiple-scale solution could 
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never yield any possible acoustic field associated with the instability wave. This 
inadequacy of the multiple-scales asymptotic expansion solution was recognized by 
Tam & Morris, who showed that the asymptotic expansion is actually not uniformly 
valid outside the Aow. Away from the flow, acoustic disturbances propagate in all 
directions, so that all spatial coordinates must be treated on an equal footing. 
Solutions obtained by the multiple-scales asymptotic expansion method, which 
purposely scales different spatial coordinates unevenly, are therefore inappropriate. 
They should not be used in the far-field region. Based on this reasoning, Tam & Morris 
proposed a way to construct an extended solution of the multiple-scales instability- 
wave solution by the method of Fourier transform. This extended solution is 
uniformly valid outside the mean flow. By means of this extended solution Tam & 
Morris (1980) were able to calculate the acoustic radiation associated with the excited 
instability waves in compressible two-dimensional mixing layers. Some numerical 
results were provided in their work and qualitative agreements with supersonic jet 
noise data were pointed out. 

So far the method of multiple-scales asymptotic expansion has proven to be useful 
for the computation of instability waves at low-to-moderate-speed flows. However, 
the method appears to break down for high-velocity flows. Specifically, when an 
instability wave having supersonic phase velocity relative to the ambient speed of 
sound becomes neutrally stable as i t  propagates downstream, one is unable to use 
this method (and the classical hydrodynamic stability theory as well) to continue the 
solution into the damped region. The problem is new and fundamental and does not 
seem to have been described or encountered elsewhere before. To illustrate this 
‘ damped supersonic wave ’ phenomenon let us consider the propagation of an 
instability wave along a supersonic jet. For convenience, we will assume that the 
instability wave is initiated by external disturbances of a single frequency a t  the 
nozzle exit. Just  downstream of this location the shear layer is thin and the wave 
is unstable. For unstable waves the local instability solution (this is the lowest-order 
term of the multiple-scales asymptotic expansion) can readily be found by solving 
the appropriate local eigenvalue problem. This local eigenvalue problem is made up 
of the linearized compressible-flow equations and the boundedness condition. The 
boundedness condition is to be applied a t  the centreline of the jet and a t  a faraway 
location outside the jet. To simplify the analysis we will regard the fluid outside the 
jet as inviscid. However, i t  is, in fact, quite easy to show that viscosity does not play 
any essential role in the problem under consideration. Now outside the jet the mean 
flow is effectively zero so that the linearized equations of motion can be solved in 
closed form. With respect to a cylindrical coordinate system ( r ,  0, x) centred a t  the 
nozzle exit and the x-axis pointing in the direction of flow, the lowest-order pressure 
perturbation associated with the instability wave of the nth azimuthal mode and 
angular frequency w can be written in terms of the nth-order Hankel function of the 
first kind Hc,l) as 

p(r,B,z,t) = Re A H ~ ) ( i r ( 0 1 2 - w 2 / a 2 , ) t ) e x p i  adx+nO-wt , ( 1 . 1 )  (1” >I 
where Re{ } = the real part of { }. 

In  ( 1 . 1 )  A is the slowly varying wave amplitude, 01 is the slowly varying eigenvalue 
(wavenumber) of the instability wave and urn is the ambient speed of sound. To ensure 
that the eigenfunction is bounded or represents an outgoing wave as r + 00, the branch 
cuts of the square-root function in the argument of the Hankel function will be chosen 

( 1  2)  
to satisfy the condition 

--&IT < Arg (a2--w2/u$)i  < +IT. 

9 F L M  138 
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Damped waves 

Subsonic + Supersonic 

w + i S  

’ Unstable waves 

FIGURE 1 .  The complex a-plane showing branch cuts (limit S + O + )  and possible trajectories of the 
local eigenvalues of an instability wave with supersonic. phase velocity initially. 

These branch cuts extend from the branch points a = w / a ,  and - w / u ,  to infinity 
in the complex a-plane as shown in figure 1. It is straightforward to see that an 
eigcnvalue at the branch point a = w / a ,  corresponds to  a wave travelling with 
exactly the ambient speed of sound in the jet flow direction. Immediately downstream 
of the nozzle exit the excited wave is unstable. That is, the local eigenvalue a has 
a negative imaginary part. For a very-high-speed jet the local phase velocity of the 
instability wave in this region is supersonic with respect to the ambient speed of sound 
so that the real part of a is positive but less than @/a,. I n  other words the local 
eigenvalue lies initially at a point in the fourth quadrant of the a-plane as depicted 
in figure 1. As the instability wave propagates downstream its growth rate reduces 
as discussed before. This means that a t  this new location of the jet the imaginary 
part of the local eigenvalue is less negative. It is, therefore, represented by a point 
closer to the real a-axis. On following the propagation of the instability wave 
downstream one finds that the local eigenvalue traces a trajectory in the a-plane 
which moves closer and closer to the real axis. Since the mean velocity of the jet 
gradually decreases in the flow direction the phase velocity of the instability wave 
would eventually become subsonic. This may occur before the wave reaches the region 
of the jet where i t  becomes damped. When this happens the trajectory of the local 
eigenvalue would cross the real a-axis a t  a point lying to the right of the branch cut 
as indicated by path ‘ A ’  of figure 1 .  I n  this case the use of the method of multiple 
scales to obtain a global wave solution encounters no difficulty as was in the work 
of Tam & Morris (1980). However, for very-high-speed flows the phase velocity of 
the excited instability wave could remain supersonic even when the wave enters the 
part of the jet where i t  is damped. A wave of this kind would have a trajectory similar 
to that of path ‘B’  in figure 1. The trajectory terminates a t  the branch cut. Since 
one is not allowed to cross the branch cut it is therefore impossible to continue the 
cigensolution downstream of this point (and still satisfy the boundedness condition 
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d 6 =0.1 

b = 0.01 

FIGURE 2 .  The complex a-plane showing the trajectories of the local eigenvalues of the axisymmetric 
(n  = 0) and the helical (n  = 1 )  instability wave modes of a cold supersonic jet. Mach number 1.5, 
Strouhal number = 0.15, b = half-width of the mixing layer of the jet. All quantities are non- 
dimensionalized by the radius of the jet, at the  nozzle exit. 

a t  r + 00). In  addition, it is also important to point out that right a t  the branch cut 
the wave is neutrally stable. At this neutral stable point the local eigenfunction has 
the form of an undamped cylindrical wave a t  r + 00. I n  the method of multiple-scales 
asymptotic expansion (see Nayfeh 1973; Saric & Nayfeh 1975; Crighton & Gastor 
1976; Tam & Morris 1980; Morris 1981) this eigenfunction is used to  compute the 
integrals of the solvability condition a t  the next stage of the analysis. The solvability 
condition is crucial to the success of the method, as it determines the slowly varying 
wave amplitude. But a t  the supersonic neutral stable condition the integrals, now 
having the neutrally stable eigenfunction in their integrands, become divergent. Thus 
when the branch cut is reached it is impossible to calculate the slowly varying wave 
amplitude as well. Clearly therefore one is forced to  conclude that the method of 
multiple-scales asymptotic expansion would break down completely when a supersonic 
instability wave becomes damped. 

We will now demonstrate by a concrete numerical example that this ‘damped 
supersonic wave’ phenomenon can occur even a t  moderately high jet Mach number 
(otherwise i t  would be of no practical concern to us). Figure 2 shows the trajectories 
of the eigenvalues of the axisymmetric mode (n = 0) and the helical (n = 1) mode 
instability waves of a cold supersonic jet of Mach number 1.5 excited a t  a Strouhal 
number 0.15. I n  calculating these trajectories the mean-velocity profile of the jet has 
been assumed to  consist of a uniform flow in the core region and a half-Gaussian 
velocity profile in the mixing layer. The core radius and the half-width b of the mixing 
layer are further assumed to be related by the requirement of conservation of total 
momentum flux, a condition verified experimentally (see Eggers 1966). This velocity 
profile has been found to approximate the measured data quite well in many instances 
(e.g. Troutt 1978: also we have tested this profile against the data of Eggers 1966; 
Lau, Morris & Fisher 1979; Lau 1981). As can be seen in this figure, the helical 

9 2  
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instability wave has subsonic phase velocity downstream of the location where the 
half-width of the mixing layer is slightly greater than 10 yo of the nozzle exit radius. 
The trajectory of this wave crosses the real axis a t  a subsonic point so that the method 
of multiple scales is useful for calculating a global solution. On the other hand, the 
phase velocity of the axisymmetric instability wave is supersonic for all values of b 
(non-dimensionalized by the nozzle exit radius) up to 0.97, a t  which the wave becomes 
neutrally stable. Beyond this value of b no eigensolution of the same family satisfying 
the boundedness condition a t  r + m  can be found. That is to say, the method of 
multiple scales would not be able to provide an adequate mathematical description 
of the spatial evolution of the axisymmetric instability wave of a round jet even a t  
a modest supersonic Mach number of 1.5. 

There are two primary objectives in the present investigation. The first is to 
develop a new mathematical procedure capable of calculating the global solution of 
excited instability waves in high-speed flows. Here global solution refers not only to 
the instability-wave solution in the flow but also its associated acoustic field as well. 
The second objective is to verify, as unambigously as possible, the suggestion that 
large coherent disturbances are important sources of sound in supersonic flows by 
comparing the calculated flow and acoustic field of the instability wave solution with 
the experimental measurements of Troutt (1978) and Troutt & McLaughlin (1982). 
Troutt’s experiment (see also Troutt & McLaughlin 1982) on a 2.1 Mach-number 
axisymmetric cold-air jet is selected for comparison because it provides the only 
available set of reliable laboratory flow and acoustic data a t  a Reynolds number which 
can be considered closely approximating that of a practical jet. It is worth while to 
point out that most previous experiments were carried out with the purpose of 
measuring either the instability-wave characteristics in the flow or the spectra and 
directivity of the acoustic field of a jet but never both at the same time. With respect 
to our first objective, we note that the global solution of Tam & Morris (1980) 
including the acoustic field for two-dimensional mixing layers is correct as far as 
subsonic phase velocity instability waves are concerned. So it would provide an 
important check to any new method of solution. Further, as can be seen in their paper, 
many separate steps are necessary to construct the overall solution. It would be best 
to avoid complicating the presentation of our new method of solution by very 
involved algebraic expressions. Because of these many considerations we feel that i t  
is prudent to report the results of our investigation in two parts. Part  1 outlines the 
new method of solution for the problem of sound radiation by instability waves in 
two-dimensional mixing layers. Unlike the supersonic jet problem where complicated 
special functions are involved the algebra in this case is rather straightforward. 
Moreover, working out the solution of this problem allows a direct comparison with 
the results of Tam & Morris (1980). In  Part 2 numerical results of the excited 
instability waves of a cold supersonic jet will be presented. These theoretical 
predictions are then compared with the hot-wire measurements of Troutt (1978) and 
Troutt & McLaughlin (1982) inside the jet flow and their microphone measurements 
in the acoustic field. 

The main reason that the method of multiple scales fails to provide a damped 
supersonic wave solution is the non-existence of a local solution of the same family 
which remains bounded a t  large distance from the sheared region of the mean flow. 
However, Tam & Morris (1980) have already shown that the multiple-scales solution 
is not actually valid in these faraway regions. Therefore a correct way to treat the 
problem might simply consist of the relaxation of the boundedness condition a t  
infinity, where the solution is not valid in the first place. I n  fluid mechanics, problems 
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FIGURE 3. Instability wave in a two-dimensional mixing layer. 

involving non-uniformity and/or non-boundedness of asymptotic expansions of the 
kind encountered here are quite common. These problems are generally referred to 
as being ‘singular ’. In  the literature several methods of treating singular perturbation 
problems are known. Here we will show that the method of matched asymptotic 
expansions when suitably adopted can provide valid global solutions of excited 
instability waves a t  high-speed flows. Within the framework of the method of 
matched asymptotic expansions a separate solution, the outer expansion, which is 
valid outside the shear layer, will be constructed. It will become clear later that  this 
outer expansion is the same as the extended solution of Tam & Morris when the phase 
velocity of the instability wave is subsonic. Now instead of requiring boundedness 
of solution a t  infinity, the outer boundary condition of the instability wave solution 
(this is the first term of the inner expansion according to the usual terminology of 
the method of matched asymptotic expansion) is that  it matches the outer expansion 
in the overlap domain of validity. This overlap domain exists just outside the sheared 
region of the mean flow. Although a number of non-trivial steps are necessary to 
accomplish this yet, in a nutshell, this is the way we propose to resolve the branch 
cut problem of the ‘damped supersonic wave ’ phenomenon. 

To apply the method of matched asymptotic expansions, the first important step 
is the choice of the appropriate inner and outer variables. For slowly divergent free 
shear flows such as two-dimensional mixing layers the rate of spread E is usually a 
small parameter. If x is the coordinate in the direction of flow and y is the coordinate 
in the direction of the mean shear gradient (see figure 3) then the mean flow is a 
function of y and the slow variable s, where s = EX. The set of inner variables suitable 
for the description of the excited instability waves in the mixing layer is also (s, y). 
It turns out that  to the lowest order in E the differential equation does not involve 
derivatives in s, so that s becomes a local parameter. Therefore this selection of inner 
variables effectively ensures that the lowest-order solution is identical with that of 
the classical locally parallel-flow approximation. Before choosing the outer variables 



256 C. K.  W .  Tam and D. E. Burton 

it would be helpful to recall that  the overall spatial growth and decay of the wave 
amplitude is crucial to sound radiation. Clearly this gradual amplitude variation in 
the flow direction is a function of the slow variable s.  This physical consideration 
suggests that the appropriate outer variable in the flow direction is s. Further, since 
sound propagates without inherently preferred direction in the far field, the spatial 
variables in this region must be scaled in the same manner in all directions. Hence 
a suitable set of outer variables for the present problem appears to be (s,y), where 
;y = €y. 

I n  §§ 3 and 4 the inner and outer asymptotic expansions corresponding to an excited 
instability wave in a two-dimensional mixing layer and its associated acoustic fields 
are constructed in terms of the inner and outer spatial variables (s,y) and (s,y). 
Matching of these solutions is carried out in $55 and 6. It is to be noted that the 
overlap domains lying just outside the shear layer wherc both the inner and outer 
asymptotic expansions are valid turns out to be quite narrow. Because of this, 
matching is performed in terms of intermediate variables according to the intermediate 
matching principle (see Van Dyke 1975, $5.8). Resolution of the problem of ‘damped 
supersonic wave’ by means of analytic continuation is discussed in 97. Finally, the 
present inner and outer asymptotic expansions of excited instability waves with 
subsonic phase velocity are shown to be identical with the results of Tam & Morris 
(1980). 

2. The physical problem 
The spatial evolution of a small-amplitude instability wave in a pre-existing 

two-dimensional supersonic mixing layer as shown in figure 3 is considered. The 
instability wave is assumed to be initiated by a localized external excitation of 
frequency SZ near the trailing edge of the splitter plate. On account of the boundary 
layer on the splitter plate the mixing layer has an initial thickness of L a t  a distance 
xo downstream of the virtual origin. The static pressure will be taken to be constant 
throughout the flow. Since the mean flow is dynamically unstable even in the absence 
of viscosity, the instability wave and its acoustic field will be assumed to satisfy the 
linearized inviscid, compressible equations of motion. These equations are the 
linearized continuity, momentum and energy equations together with the equation 
of state. In  dimensionless form using the freestream quantities U,, p, as the velocity 
and density scales, L (the initial thickness of the mixing layer) as lengthscale and 
L/U,,p,  UZ, as the time and pressure scales respectively, these equations can readily 
be written as 

where primes denote fluctuating quantities, y is the ratio of specific heats and M is 
the freestream Mach number. The mean flow of the two-dimensional mixing layer 
is a slowly varying function of the coordinate in the flow direction. Measured mean-flow 
profiles will be used. Experimental data obtained by Liepmann & Laufer (1947) and 
a t  supersonic Mach numbers by Hill & Page (1969) show that the mean velocities 
may be presented analytically in the form 

il = (G(y/s), N y / s ) ,  O ) ,  ( 2 . 3 a )  



Sound generated by instability waves of supersonic Jlows. Part 1 257 

where 
u = l ,  v = 0  (yky,), (2.3 b )  

ti = 0,  €2) = €Urn (y < -&). ( 2 . 3 ~ )  

This form of the mean-flow profile was also used by Tam & Morris (1980). I n  (2.3a-c) 
s = ex, where c is a measure of the rate of spread of the mixing layer. Numerically 
e, which is a function of Mach number, is less than 0.1 and will be regarded here as 
a small parameter of the problem. The two velocity components of (2 .3a )  are related 
by the continuity equation. For freestream Mach number up to  about two, a 
physically realistic approximation is to assume that the static temperature, and hence 
the density also, is constant in the mean continuity equation. This simplifying 
assumption adopted by Tam & Morris can, however, be easily relaxed. To account 
for the compressibility effects in the linearized momentum and energy equations (2.1) 
and ( 2 . 2 ) ,  the mean density /s will be taken to be related to the mean velocity by 
Crocco’s relation. 

Since the instabiIity wave is initiated by external excitation of frequency iw, the 
solution of (2.1) and (2.2) will have a time-dependent factor of the form exp (-iiwt). 
Thus on separating out this time factor the governing equations for the spatial part 
of the solution are 

These are the equations to  be solved in the mixing layer as well as in the acoustic 
field. Because of the variable coefficients involved a simple analytical solution which 
is valid everywhere cannot be found. I n  the rest of this paper a solution that 
represents physically a spatially growing instability wave and its associated acoustic 
field will be constructed by the method of matched asymptotic expansions. The inner 
solution is to be valid inside the mixing layer and in the adjacent near pressure field 
outside the mixing layer. The fluctuation in the near field consist of both hydro- 
dynamic (non-propagating) and acoustic components. The outer solution is to be valid 
in the acoustic far field and the near field. These two solutions are to be matched in 
the near pressure field where both solutions are valid. 

3. The inner solution 
As discussed in 5 1, the appropriate inner variables are y and the slow variable s. 

Physically the inner solution models a wave that propagates through a slightly 
inhomogeneous medium formed by the mean flow. Problems of this kind have been 
studied extensively before (e.g. Whitham 1974, 511.8). Such a wave may be 
represented analytically in the form of an asymptotic expansion with E ,  the rate of 
spread of the mixing layer, as the small parameter. 

(3.1) 
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In  (3.1) s = E X  is the slow variable and H(s )  is the phase function. For convenience 
we will denote the derivative of H(s)  by a ( s ) ;  that is, 

= a($) .  d8(s) 
as (3.2) 

Physically a(s)  is the local (complex) wavenumber. 
Substitution of (3.1) into (2.4) and (2 .5)  and partitioning terms according to powers 

of B and then eliminating all other variables in favour of pressure p gives, to order 

In  general the order en equation is 

The inhomogencous term x n  on the right-hand side of (3.4) contains only lower-order 
quantities, i.c. pO,p , ,  . . . ,P,-~.  

Kow for y > ym, on account of the mean flow given by (2.3b), (3.3) reduces to  

Two linearly independent solutions of (3.5) are 

where 

(3 .5)  

(3.6) 

(3.7) 

At this time any branch of the square root of the right-hand side of (3.7) may be used. 
However, to facilitate the process of matching of solutions which will be carried out 
later, i t  is advantageous to  choose the branch cuts for A ,  in the a-plane as shown 
in figure 4. This choice of the branch cut assures that 0 < arg (A , )  < 7c in the entire 
complex a-plane. 

Let c1(s, y) and &Js, y) be two linearly independent solutions of (3.3) such that for 

Y > Ym 5, = eiA+y, 5 = e-iA+u. 

The general solution of the zeroth-order inner solution may be written as 

(3.8) 

PO(!/> 8) = 4 4 s )  Y) +Bob)  5 2 ( %  Y). (3.9) 

In  (3.9) A,(s) and Jyo(s) are unknown amplitude functions. 
I n  the region just below the mixing layer, i.e. y < -yn, (3.3) becomes 

__- ( a 2 - p o o w 2 M 2 ) p o  = 0. 
a Y 2  

(3.10) 

Here pm is the dimensionless mean fluid density in the region y < - yn. Two linearly 
independent solutions of (3.10) are eA-u and e-A-Y, where 

A -  = (a2-pp,w2M2)1. (3.11) 

Again the choice ofthe branch cuts of the square-root function in A-  is quite arbitrary 
at this time. Ultimately i t  is decided by the process of matching the inner and the 
outer solutions. In  anticipation of this we will choose the branch cut as shown in figure 
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FIGURE 4. Branch cuts for the function h+(a).  
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FIGIJKE 5. Branch cuts for the function L(a) (limit L o + )  

5. To avoid confusion the frequency parameterw should be treated as a Fourier-Laplace 
transform variable with an infinitesimally small positive imaginary part. Formally 
we will take the branch points of h - to be at 

This choice of the branch cuts ensures that -4. < arg ( A _ )  < $ 7 ~  in the complex 
a-plane. 

Now for y < - yn the solutions cl(s, y) and C2(s, y) will, in general, each be a linear 
combination of the two linearly independent solutions of (3.10). This may be 
cxpressed explicitly as 

~ ; ( s .  y) = bz(a) eA-y+p,(a) e-A-g, .J 

In (3.12) the constants PI, pl, pz and p2 arc functions of the wavenumber a. 

(3.12) 
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To sum up, from (3.1) and (3.9) the one-term inner expansion denoted by a 

(3.13) 

The behaviour of the functions and c2 for y > ym and y < -yn are given by 
equations (3.8) and (3.12) respectively. I n  this solution the functions A,(s), B,(s) and 
a(s) = dO/ds are still unknown. They will be determined later. For damped waves 
the functions cl(s, y)  and d ( s ,  y) are to be constructed by the deformed contour 
integration method to  be carried out in the complex y-plane as discussed by Tam 
& Morris (1980). 

subscript i is 

pi = [ A d s )  gl(s, y) + &(a) L;Z(s, y) +@€)I eio(s)/E. 

4. The outer solution 
There are two outer solutions in this problem. One is to be valid in the region y > ym 

and the other in the region y < - yn. To distinguish these two different solutions we 
will refer to the former as the upper outer solution and the latter as the lower outer 
solution. I n  $ 1  the choice of suitable outer variables was discussed. It was argued 
that in regions far away from the mixing layer the acoustic wave should propagate 
with no preferential direction. To comply with this physical requirement the spatial 
coordinates must, therefore, have the same scaling in all directions. The appropriate 
outer variables were found to be s = ex and y = ey. I n  the region where the upper 
outer solution is valid the governing equations (2.4) and (2.5) written in the outer 
variables become 

. w  au ap 
as as 

-I-@,+ - = - - 

I n  the limit e+O with the outer variables fixed (4.1) is exact to all powers of e. By 
eliminating u and u from (4.1) a single equation for p may be found: 

Since the domain of this solution extends to y-t 00, it must satisfy the boundedness 
or outgoing-wave condition there. I n  addition, this upper outer solution must match 
the inner solution according to  the matching principle. 

A formal exact solution of (4.2) satisfying the boundedness or outgoing wave 
condition at  %+a can easily be found by the method of Fourier transform. To 
construct this solution, the first step is to  apply a Fourier transform to the s-variable 
in (4.2). The transformed equation is an ordinary differential equation which depends 
on the variable y alone. This equation can be solved in a straightforward manner, 
By inverting the Fourier transform, the upper outer solution denoted by a subscript 
o and a superscript u may be written as 

m 

p;(s ,y )  = - m  g(~,e)exp{i,~2(w--tk)2-k2s2]?% +iks}dk. (4.3) 

In  (4.3) k is the Fourier transform variable. The function g ( E , c ) ,  without loss of 
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generality, will be considered as a Fourier transform of an arbitrary function a(,, E )  

as follows : 

g ( k , ~ )  = 2x a(,, ,=)eie(s)/e--iksd,y. (4.4) 
- m  

This representation of g(k ,  E ) ,  suggested by the work of Tam & Morris (1980), will 
facilitate the process of matching solutions later on. In  order that  the boundedness 
or outgoing wave condition at p c o  be satisfied, the branch cuts of the square-root 
function [M2(w--  ~ k ) ~  - k2e2]4 in (4.4) must be specified properly. This function 
depends on the variable T,J = ~ k .  Thus in the complex 7-plane the branch cuts are to 
be inserted such that 0 d arg[M2(w-q)2-y2]J < x. This choice of the branch cuts 
assures that as y+ 00 the upper outer solution of (4.3) either goes to  zero or represents 
an outgoing wave for all values of 7 in the complex plane. As a function of the 
square-root function can easily be recognized to be identical with h+(q)  (see ( 3 . 7 ) ) .  
The branch cuts of h+(a)  and h+(q) are the same in the a- and 7-planes (see 
figure 4). 

I n  the region y < - yn a formal exact lower outer solution may be constructed 
following the same steps as above. This solution which will be denoted by a subscript 
o and a superscript 8, has the form 

(4.5) 

where the function @ ( k ,  E )  is given by the Fourier transform of an arbitrary function 

m 

-a 

g(k, E )  = (4.6) - A(s ,  E )  eiO(s)/c-iksds. 
2n S" --a; 

A(s, E )  : 

The function p(&, E )  in (4.5) when written out explicitly is 

iw(eu,)pm M2 [ ( ~ k ) ~ - p ~  M2w2/(1 - ( E u ~ ) ~ ~ ~  M2)]B 
(4.7) [ 1 - (SU,)"" M2]1 + 

r' = 1 - (E27,)2Pm M2 

The branch cf the square-root function in the &-plane (< = el?) to be used in (4.7) is 

This choice ensures that the boundedness or outgoing-wave condition a t  y+- a3 is 
satisfied. 

To sum up, the upper and lower outer solutions are given by (4.3)-(4.6). I n  these 
solutions the functions m(s ,  E )  and a(,, E )  are arbitrary. These functions are to be 
determined by the process of matching, which will be discussed in $5. 

5. Matching of solutions 
In many fluid-mechanics problems that are solvable by the method of matched 

asymptotic expansions (see Van Dyke 1975,gS.S and also note 5) the overlap domain 
of validity may become vanishingly small in the outer or the inner limit. When this 
occurs the usual inner- and outer-limit matching process would fail. Fortunately, 
according to Kaplun's (1967) concept of continuum of intermediate limit the problem 
can generally be resolved by the use of intermediate matching, a procedure always 
favoured by Colc (1968). It turns out that the problem under consideration falls into 
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this category. Hence to match the solutions we will follow the intermediate matching 
principle of Van Dyke and Cole. 

Let us introduce an intermediate variable y" defined by 

y" = $IN Y, (5.1) 

where N is a large positive number ( N  $= 1 ) .  I n  addition the slow coordinate variable 
s will again be used. I n  the present problem the outer solutions given by (4.3)-(4.6) 
are exact to all powers of E .  Therefore the intermediate solution can easily be obtained 
by changing the coordinates of the outer solutions to  the intermediate variables, i.e. 
replacing tj by ~ l - l / ~ y "  in (4.3)-(4.6). Since the outer and intermediate solutions are 
identical, to  match the solutions (according to the intermediate matching principle), 
it is only necessary to show that the asymptotic expansion of the intermediate 
solution agrees with the intermediate limit of the inner solution to the appropriate 
order. 

To develop the intermediate asymptotic expansion we will first rewrite (4.3) and 
(4.4), the upper intermediate solution, in the following form obtained by changing 
the integration variable to  7,  where 7 = ck : 

It will be assumed that, the unknown function a(s, E )  has an asymptotic expansion 
of the form 00 

A($,€)  = x eG?,(s). (5.4) 
n - 0  

On substituting (5.4) into (5.3), the integral, in the limit E + O  with 7 fixed, may be 
evaluated asymptotically by the well-known saddle-point method. The phase function 
F ( s )  of the integral is 

F(s )  = i(e(s)--vs). (5.5) 

The saddle points are given by the roots of F'(s )  = 0 or, from (3.2), 

a(s)-Tj = 0. (5.6) 

We will assume that the two-dimensional mixing layer has only one unstable wave 
mode, which implies, as will become clear later, that  (5.6) has only one root. Let us 

(5.7) 
denote this root by 

s = s(7) where a(s)  = 7. 

Dingle (1973) has worked out the formulas for the full asymptotic expansion of an 
integral of the form that appeared in (5 .3) .  On following his formulas, the first few 
terms of the asymptotic expansion can easily be found. They are 
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FIGURE 6. The y-plane showing the branch cuts of h+(y) ,  the saddle point y = a(s) and its 
trajectory as s increases, and the deformed integration contour. 

On substituting (5 .8)  into (5.2), the infinite integral can again be evaluated asymp- 
totically by the saddle-point method. Here we have 

E + O  

The saddle point in this case is given by the root of 

d - [ O ( s ) - ~ ( s - s ) ]  = 0 
d7 

or ds 
[a(S)-7]- - (S-s) = 0. 

d7 
(5.10) 

But, from the definition of s given by (5.7), the first term of (5.10) is zero, so that 

S ( 7 )  = s. (5.11) 

Equation (5.11) gives the implicit relation of 7 as a function of s. However, when this 
condition holds, the explicit relation is given by (5 .7 ) ;  that  is, 

7 = a($). (5.12) 

(Note that the s-variable in (5.12) is the slow coordinate variable in the flow direction, 
whereas the s in (5.7) is the integration variable of the saddle-point method.) Notice 
that the location of the saddle point 7 = a ( s )  depends on the slowly varying 
coordinate s. As s increases or when one follows the wave motion in the downstream 
direction the saddle point traces out a path in the complex 7-plane as shown in figure 
6. Now deform the 7-integration contour in the complex 7-plane to  pass through the 
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/ I / contour 

/’ P a t h A  

FIGURE 7 .  [-plane showing the branch cuts of A _ ( [ ) ,  the saddle point 6 = a($) and its possible 
trajectories as s increases, and the deformed integration contour. 

saddle point. The asymptotic expansion of the integral of (5.9) can easily be evaluated 
following the procedure of Dingle (1973). After some lengthy but straightforward 
algebra we find 

where 
J 

Similarly in the region below the mixing layer, a lower intermediate solution can 
be found. On evaluating the integrals involved by means of the saddle-point method 
and assuming that the arbitrary function d(s, e) has an expansion of the form 

(5.14) 

the following asymptotic expansion of the lower intermediate solution is derived : 

where 

Of interest later on is the path of the saddle point < = a(s) in the complex (-plane 
(( = ek) .  I n  general, two classes of trajectories are possible. They are shown as paths 
‘A’ and ‘B’  in figure 7. The class typified by path ‘A’ has a trajectory which crosses 
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the real (-axis to the right of the branch point p& Mw. The class typified by that of 
path ‘ B ’  follows a trajectory which reaches the real [-axis a t  the branch cut. We will 
temporarily assume that the saddle point follows path ‘A ’ as s increases (the ‘damped 
subsonic wave’ case). I n  the case of path ‘B’  one encounters the ‘damped supersonic 
wave ’ problem as discussed in 5 1. This case will be considered in 5 7 .  

Now we will take the intermediate limit of the one-term inner solution given by 
(3.13). On accounting for the behaviour of the function and c2 as their argument 
++_ co (see (3.8) and (3.12)) it is easy to  find 

lim pi N eie(s)/s [ A , ( ~ )  eiA+gs’” + Bo(s) e-ih+gsl’N + O ( E ~ - ’ / ~ ) ] ,  (5.16) 
E + O  s, Gfixed, y“ > 0 

limpi - eiots)ja [(A,(s) pl (a)  + B,(s) ~ , ( a ) )  eA-gE”N 
s+O s, ”yixed, 5 < 0 

+ ( ~ , ( s )  p,(a) - t - ~ , ( s )  p2(a)) e-h-gsl’N + O ( C ~ - ’ / ~ ) ] .  (5.17) 

On comparing (5.16) with (5.13), matching to terms of order unity is achieved if 

and 
(5.18) 

(5.19) 

Similarly on comparing (5.17) with (5.15), matching to  terms of the lowest order is 

(5.20) 
possible if p , w  =o, 
and 

Equation (5.18) requires that the one-term inner solution (3.13) should be a function 
of [, alone. Equations (5.19) and (5.21) relate the lowest-order amplitude function 
of the outer solutions to that of the inner solution. Equation (5.20) cannot be satisfied 
except for special values of a. These special values are the eigenvalues of the 
commonly used locally parallel-flow hydrodynamic stability theory. When the local 
eigenvalue a(s) is such that on following the instability wave motion downstream it 
traces out a trajectory of type ‘A’ as shown in figure 7 ,  the one-term inner solution 
as given by (3.13) decays to zero as y+ k co. This is so despite the fact that  the solution 
is actually not valid in the limit of unbounded values of y. In  this case the inner solu- 
tion is identical with the eigenfunction of the classical locally parallel-flow hydro- 
dynamic stability theory. At this stage, except for the unknown amplitude Ao(s),  the 
one-term inner solution as well as the one-term outer solution have been completely 
determined. An equation for A,($) will be found a t  the next stage of the matching 
process. 

6. The wave-amplitude equation 

with n = 1 :  
The second term of the inner solution (to order e) is given by the solution of (3.4) 

The inhomogeneous term x1 depends on the zeroth-order solution p ,  only. Except 
for the zeroth-order amplitude function Ao(s) ,  this solution has been found, so that 
we may regard x1 as a known function of s ,  y and A,. The solution of the 
inhomogeneous equation (6.1) can be constructed by the method of variation of 
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parameters (see Boyce &, DiPrima 1977). I n  terms of the two linearly independent 
solutions of the homogeneous equation C1(s,y) and C2(s, y), which have been used in 
(3.9), this solution may be written as 

where g ( s )  is an arbitrary function of s. Without loss of generality, we will assume 
that -yn < 9 < ym. W(C,, C2) is the Wronskian and Al(s)  is the €-order amplitude 
function of the instability wave. 

I n  the regions y > ym and y < - yn the two linearly independent solutions Cl and 
Q are exponential functions of y given by (3 .8)  and (3.12). Thus in these regions, (6 .2)  
may be written out explicitly in terms of simple functions of y. These expressions 
will be useful to the operation of matching the inner solution with the intermediate 
solution to be carried out later. After some algebraic manipulations i t  is straightforward 
to find 

p ,  = [!ji(h;)2a’A,y2+ ( ~ h r a ’ ~ o + h ~ A ~ ) y + ~ ] e i A + Y + ~ e - i A + Y  (y > ym), (6 .3a)  

where 

( 6 . 3 ~ )  

( 6 . 4 ~ )  

On substituting (3 .9) ,  (6 .2) ,  (5 .18) ,  (5.19) and (5.21) into (3.1), the two-term inner 
solution is found. This solution must match the intermediate asymptotic expansions 
(5.13) and (5.15) in the intermediate limit. By means of (6.3) and (6.4) the 
intermediate limit of this two-term inner solution can readily be calculated : 

limp, eio(S)/e (eiA+Qel/N [A,+€1-z/N:i(h;)2a’AOdz 
e+O s,Gfixed 

(5 > 0 )  

+e’-’lN($Ara‘& +A; a;) g+eD]+sEe-’*+g”” + O ( C ~ - ~ / ~ ) } ,  (8.5) 
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(6.5) agrees with the upper intermediate asymptotic 
expansion (5.15). Similarly to the same order, (6.6) and the lower intermediate 
asymptotic expansion (5.16) are equal. Now to match terms to order e we must have 

To terms up to order 

A, = D ,  (6.7) 

E = 0, (6.8) 

A, = F ,  

G = 0, 

(6.9) 

(6.10) 

Equations (6.7) and (6.9) define the values of the unknown function 2, and A, in 
terms of known functions of s and A,($). Equations (6.8) and (6.10) provide two 
equations for the two unknowns A,(s) and $(s) .  (Note that x1 is a linear function of 
A,  and Ah($).) By subtracting one of these equations from the other to form 
E-GIP, = 0, a single equation for A,(s) is obtained: 

On writing out the above equation in full, one obtains a first-order ordinary 
differential equation for A, in the form 

dA0 1,- + I , A ,  = 0. 
ds 

(6.12) 

I n  (6.12) I ,  and I ,  are known functions of s. They are, however, quite complicated 
and will not be given here. The solution of (6.2) is 

(6.13) 

With the instability-wave amplitude A,(s) determined, the complete solution of the 
present problem (both inner and outer solutions) to order unity is now found. The 
€-order wave amplitude, namely Al(s),  is still not specified a t  this stage. It will be 
decided by matching terms to order 2. 

It is interesting and important to point out a t  this time that in the case of 'damped 
subsonic waves ' (6.1 1 )  is identical with the solvability condition of the multiple-scales 
solution of Tam & Morris (1980). To show this, i t  can be verified under the assumption 
of a 'damped subsonic wave' that the second and third terms of (6.11) are equal to 
the following integrals : 

By combining these tjwo equations with (6.11) we find 

(6.14) 

(6.15) 

(6.16) 

The Wronskian W(cl, c2) of (6.1) is equal to a constant times p ( ~ - a a ) ~ .  In  this form 
it is easy to see that (6.16) is identical with the solvability condition given by equation 
(2.19) of Tam & Morris (1980). Therefore in the case of a 'damped subsonic wave' 
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the solution obtained by the method of matched asymptotic expansions and that 
obtained by the method of multiple scales are the same, a t  least to order IZ. We expect 
the two methods would give identical results for the higher-order terms as well. 

7. Resolution of the supersonic damped wave problem 
When the flow is highly supersonic the phenomenon of the ‘damped supersonic 

wave’ described in $91 and 5 will inevitably occur. The basic problem here is that 
as soon as the locally parallel instability-wave solution having supersonic phase 
velocity relative to the ambient speed of sound becomes damped it is not possible 
to find a solution of the same family that remains bounded in the limit JyJ --f CO. Within 
the framework of the classical hydrodynamic sttability theory and the more recent 
theories based on the method of multiple scales (e.g. Sario & Nayfeh 1975; Crighton 
& Gaster 1976; Plaschko 1979; Tam & Morris 1980; Morris 1981) this boundedness 
condition is an essential requirement in the formulation of the lowest order or the 
instability-wave solution. Failure to meet this specification renders these methods 
rather useless. The reason which leads to  the breakdown of these approaches is not 
too difficult to find. Earlier Tam & Morris (1980) have shown that the multiple-scales 
instability-wave solution is not uniformly valid for large IyI. It should therefore not 
be too surprising that the solution exhibits undesirable behaviour in this region. From 
the standpoint of the method of matched asymptotic expansions, the imposition of 
the boundedness condition on the instability-wave solution a t  Iy1 --f co appears to be 
somewhat unreasonable and unnecessary. Here the locally parallel-flow instability 
wave solution is just the first-term inner solution. This solution, however, does not 
represent the physical wave motion a t  large Iy(. In  this region only the outer solution 
would provide the correct description of the wave field. Requiring a solution to satisfy 
an imposed boundary condition in a region where it does not represent the physical 
entity naturally would lead to  unsurmountable difficulties. In  this sense the failure 
of the method of multiple scales to produce a valid global solution is not entirely 
unexpected. 

I n  constructing the spatially growing instability-wave solution by the method of 
matched asymptotic expansions the imposition of the boundedness or outgoing-wave 
condition a t  IyI --f co is never a problem. This condition can always be satisfied by 
the outer solutions. Within this method, the ‘ damped supersonic wave ’ phenomenon 
therefore no longer manifests itself in the boundedness condition a t  (yJ --f co, but 
instead shows up in the process of matching solutions. As discussed in $5, when it 
occurs the trajectory of the saddle point 6 = a ( s )  in the complex (-plane runs into 
the branch cut of the function L ( 6 )  as illustrated by path ‘ B ’  of figure 7. This 
problem can, however, be easily resolved by the use of analytic continuation. 
Suppose the saddle point follows path ‘B’  of figure 7 as s increases. Upon reaching 
the branch cut of A- a t  the positive real 6-axis, the trajectory, according to the theory 
of complex variables, may be analytically continued into the second Riemann sheet 
as shown in figure 8. This is permissible because boundedness of solution a t  large IyI 
is no longer a requirement of the inner solution. To evaluate the 6-integral by the 
saddle-point method i t  will now be necessary to deform the integration contour 
analytically into the second Riemann sheet to pass through the saddle point as well. 
This can be done, however, without changing the form of the asymptotic expansions 
at, all. With the above modification of the saddle-point trajectory it is easy to see 
that the inner and outer (or the intermediate) solutions obtained in the previous 
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sections will remain valid even for very high supersonic-Mach-number flows. In  other 
words, the ‘damped supersonic wave’ phenomenon poses no real obstacle to the 
construction of a global instability-acoustic-wave solution by the method of matched 
asymptotic expansions. 

Branch cut 

8. Concluding remarks 
At the end of $6 it was pointed out that  for ‘damped subsonic waves’ the method 

of multiple scales and the method of matched asymptotic expansions when applied 
to  the problem of spatially growing instability waves gave identical results. Despite 
this fact, we wish to emphasize that these two methods are actually based on two 
fundamentally opposite points of view. The method of multiple scales is rooted 
primarily in the supposition that the instability wave is a local event in the mixing 
layer. It is only when the growth and decay of the wave amplitude in the flow 
direction are considered in their totality that the global picture of the entire wave 
phenomenon emerges. Thus the method is predicated on the existence of a local 
instability-wave eigenvalue solution. The wave-amplitude equation which describes 
the global nature of the wave is obtained from the solvability condition of the basic 
eigenvalue problem. Physically this solvability condition may be interpreted as the 
requirement that  the local nature of the instability-wave solution is not to be violated. 
In  this way the global character of the solution is treated by this method only as 
a secondary consequence of the local instability wave phenomenon. On the other hand 
the method of matched asymptotic expansions is based on the premise that the 
instability wave and its associated noise field form a global problem. Therefore, even 
a t  the very beginning, the problem must be considered in its entirety in the whole 
physical space. Although, of necessity, the full solution is divided into an inner 



270 C. K .  W.  Tam and D. E. Burton 

solution which eventually gives the instability wave and an outer solution which gives 
the far-field radiated sound, they are to be considered to be of equal importance. I n  
fact the two solutions are mutually dependent on each other. In  this method the local 
nature of the instability wave is revealed only in the matching process. A closer 
examination of the steps taken in matching the intermediate and the inner expansions 
as described in $55 and 6 shows that only a small portion of the total information 
contained in the outer solution is used. Primarily i t  is the parts of the integrand near 
the saddle points of the outer solutions (4.3)-(4.6) (see figures 6 and 7) which are 
involved in the matching. The radiated sound field, which can be shown to be given 
by the contributions of the integrand near the branch cuts, does not play any vital 
role. In  spite of this, matching is a global process requiring the agreement of the inner 
and the intermediate (or outer) solutions over an extended region of space. Matching 
terms to order unity requires the existence of an instability-wave solution over the 
whole length of the mixing layer in the flow direction. Matching terms to order 6 

provides the global amplitude distribution of the wave and its associated acoustic 
field. Now if the flow is subsonic or incompressible the disturbances associated with 
the entire phenomenon are confined to the immediate neighbourhood of the mixing 
layer. In  this case both methods should be applicable, as in a sense the problem is 
still local in nature. However, when the flow is highly supersonic the radiated sound 
field becomes increasingly important. It now extends all the way to infinity. When 
this is the case, the problem is definitely global in nature. Based on the above 
discussion, clearly in this instance the only logical way to  analyse the problem is by 
the method of matched asymptotic expansions of this paper. 

Finally we would like to mention again that the acoustic field associated with the 
spatial evolution of the instability wave is embedded in the outer solution. If one 
is interested in the radiated acoustic field it is only necessary to  perform an asym- 
ptotic evaluation of the k-integral of the outer solution under the condition 
r = ( x 2 + y 2 ) ~ +  00. This can be done by the well-known method of stationary phase. 
We will not carry out this analysis here as i t  is not the main point of interest of the 
plane mixing-layer problem. A detailed calculation of the radiated sound field for an 
axisymmetric supersonic jet will, however, be given in Part 2 (Tam & Burton 1984). 

One of the authors (CKWT) wishes to thank Dr P. J. Morris for discussions on the 
computational aspect of the ‘ Damped supersonic wave ’ phenomenon. This research 
was supported by the National Science Foundation under Grant CME 78-05122 A01. 

REFERENCES 

BISHOP, K .  A. ,  FFOWCS WILLIAMS, J.  E. & SMITH, W. 1971 On thenoisesourcesoftheunsuppressed 
high speed jet. J. Fluid Mech. 50, 21-31. 

RLUMEN, W. 1970 Shear layer instability of an inviscid compressible fluid. J. Fluid Mech. 40, 
769-781. 

BLUMEN, W. 1971 Jet flow instability of an inviscid compressible fluid. J .  FZuid Mech. 46,737-747. 
BOYCE, W. E:. & DIPRIMA, R. C. 1977 Elementary Differential Equations. Wiley. 
CHAN, Y .  Y .  & WESTLEY, R.  1973 Directional acoustic radiation generated by spatial jet 

COLE, J. 1). 1968 Perturbation Methods in  Applied Mathematics. Blaisdell. 
CKICHTON, D. B. & GASTER, M. 1976 Stability of slowly divergent jet flows. J. FZuid Mech. 77,  

DINGLE, R.  B. 1973 Asymptotic Expansions: Their Derivation and Interpretation. Academic. 
ECGERS, J. M. 1966 Velocity profile and eddy viscosity distributions downstream of a Mach 2.2 

instability. Can. Aero. and Space Inst. Trans. 6, 36-41. 

397-413. 

nozzle exhausting to quiescent air. N A S A  T N  11-3601. 



Xound generated by instability waves of supersonic flows. Part 1 27 1 

GARG, V. K. & ROUND, G. F. 1978 Nonparallel effects on the stability of jet flows. Trans A S X E  
E: J. Appl.  Mech. 45, 717-722. 

HILL,  W. G. & PAGE, R. H. 1969 Initial development of turbulent compressible free shear layers. 
Trans. A S M E  D: J .  Basic Engng 91, 67-73. 

KAPLUN, S. 1967 In Fluid Mechanics and Singular Perturbations (ed. P. A. Lagerstrom, 
L. N. Howard & C. S. Liu). Academic. 

LAW, J. C .  1981 Effects of exit Mach number and temperature on mean-flow and turbulence 
characteristics in round jets. J .  Fluid Mech. 105, 193-218. 

LAW, J. C., MORRIS, P. J. & FISHER, M. J .  1979 Turbulence measurements in subsonic and 
supersonic jets using a laser velocimeter. J. Fluid Mech. 93, 1-27. 

LEES, L. & IAN, C. C. 1946 Investigation of the stability of the laminar boundary layer in a 
compressible fluid. N A C A  Tech. Note 11  15. 

LEES, L. & RESHOTKO, E. 1962 Stability of the compressible laminar boundary layer. J .  Fluid 
Mech. 12, 555-590. 

LIEPMANN, H. W. & LAUFER, J. 1947 Investigations of free turbulent mixing. N A C A  Tech. Note 
1257. 

LIN, C .  C. 1953 On the stability of laminar mixing region between two parallel streams in a gas. 
N A C A  Tech. Note 2887. 

MACK, L. M. 1965 Computation of the stability of the laminar compressible boundary layer. In 
Methods in Computational Physics, vol. 4 (ed. B. Alder), pp. 247-299. Academic. 

MACK, L. M. Linear stability theory and the problem of supersonic boundary-layer 
transition. AZAA J .  13, 279-289. 

MCLAWGHLIN, D. K., MORRISON, G .  L. & TROUTT, T. R. 1975 Experiments on the instability waves 
in a supersonic jet and their acoustic radiation. J .  Fluid Mech. 69, 73-95. 

MCLAUGHLIN, D. K., MORRISON, G. L. & TROUTT, T. R .  1977 Reynolds number dependence in 
supersonic jet noise. AZAA J. 15, 526-532. 

MORRIS, P. J. 1977 Flow characteristics of the large-scale wave-like structure of a supersonic round 
jet. J .  Sound Vib. 53, 223-244. 

MORRIS, P. J. 1981 Stability of a two-dimensional jet. AZAA J .  19, 857-862. 
NAYFEH, A. H. 1973 Perturbation Methods. Wiley-Interscience. 
PLASCHKO, P.  1979 Helical instabilities of slowly divergent jets. J .  Fluid Mech. 92, 209-215. 
RESHOTKO, E. 1976 Boundary layer stability and transition. Ann. Rev. Fluid Mech. 8, 31 1-349. 
SARIC, W. S. & NAYFEH. A. H. 1975 Nonparallel stability of boundary layer flows. Phys. Fluida 

18, 945-950. 
SARIC, W. S. & NAYFEH, A. H. 1977 Nonparallel stability of boundary layers with pressure 

gradients and suction. AGARD CP-224, pp. 6.1-6.21. 
SEDEL'NIKOV, T. K. 1967 The frequency spectrum of the noise of a supersonic jet. Phys. Aero. 

Noise. Nauka. (Trans]. 1969 N A S A  TTF-538, pp. 71-75.) 
TAM, C.  K. W. 1971 Directional acoustic radiation from a supersonic jet generated by shear layer 

instability. J .  Fluid Mech. 46, 757-768. 
TAM, C. K. W. 1972 On the noise of a nearly ideally expanded supersonic jet. J .  Fluid Mech. 51, 

69-95. 

1975 

TAM, C. K. W. I975 Supersonic jet noise generated by large-scale disturbances. J .  Sound Vib. 38, 
51-79. 

TAM, C .  K. W. & BURTON, D. E. 1984 Sound generated by instability waves of supersonic flows. 

TAM, C .  K. W. & MORRIS, P. J .  1980 The radiation of sound by the instability waves of a 

TROUTT, T. R. 1978 Measurements on the flow and acoustic properties of a moderate Reynolds 

TROUTT, T. R. & MCLAUGHLIN, D. K. 1982 Experiments on the flow and acoustic properties of 

VAN DYKE, M. 1975 Perturbation Methods in Fluid Mechanics. Parabolic. 
WHITHAM, (2. B. 1974 Linear and h'onlinear Waves. Wiley-Interscience. 

Part 2. Axisymmetric jets. J .  Fluid Mech. 138, 273-295. 

compressible plane turbulent shear layer. J .  FZuid Mech. 98, 34!3-381. 

number supersonic jet. Ph.D. thesis, Oklahoma State University. 

a moderate-Reynolds-number supersonic jet. J .  Fluid Mech. 116, 123-156. 


